Asymptotic dynamics of higher-order lumps in the Davey–Stewartson II equation

نویسندگان

چکیده

A family of higher-order rational lumps on non-zero constant background Davey-Stewartson (DS) II equation are investigated. These solutions have multiple peaks whose heights and trajectories approximately given by asymptotical analysis. It is found that the time-dependent for large time they approach same height value first-order fundamental lump. The resulting considered it scattering angle can assume arbitrary values in interval $(\frac{\pi}{2}, \pi)$ which markedly distinct from necessary orthogonal zero background. Additionally, illustrated containing multi-peaked $n$-lumps be regarded as a nonlinear superposition $n$ ones $|t|\rightarrow\infty$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global asymptotic stability of the higher order equation

In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation, xn+1 = axn + bxn−k A + Bxn−k where a, b, A, B are all positive real numbers, k ≥ 1 is a positive integer, and the initial conditions x−k, x−k+1, ..., x0 are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotica...

متن کامل

Global asymptotic stability of a higher order rational difference equation

In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...

متن کامل

Asymptotic Periodicity of a Higher-Order Difference Equation

We give a complete picture regarding the asymptotic periodicity of positive solutions of the following difference equation: xn = f (xn−p1 , . . . ,xn−pk ,xn−q1 , . . . ,xn−qm), n∈N0, where pi, i ∈ {1, . . . ,k}, and qj , j ∈ {1, . . . ,m}, are natural numbers such that p1 < p2 < ··· < pk, q1 < q2 < ··· < qm and gcd(p1, . . . , pk,q1, . . . ,qm) = 1, the function f ∈ C[(0,∞), (α,∞)], α > 0, is i...

متن کامل

the survey of the virtual higher education in iran and the ways of its development and improvement

این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.

On the Dynamics of a Higher-Order Difference Equation

This paper deals with the investigation of the following more general rational difference equation: yn 1 αyn/ β γ ∑k i 0 y p n− 2i 1 ∏k i 0yn− 2i 1 , n 0, 1, 2, . . . ,where α, β, γ, p ∈ 0,∞ with the initial conditions x0, x−1, . . . , x−2k, x−2k−1 ∈ 0,∞ . We investigate the existence of the equilibrium points of the considered equation and then study their local and global stability. Also, som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2022

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/aca4a9